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Sutezolid (PNU-100480 [U-480]) is an oxazolidinone antimicrobial being developed for the treatment of tuberculosis. An active
sulfoxide metabolite (PNU-101603 [U-603]), which reaches concentrations in plasma several times those of the parent, has been
reported to drive the killing of extracellular Mycobacterium tuberculosis by sutezolid in hollow-fiber culture. However, the rela-
tive contributions of the parent and metabolite against intracellular M. tuberculosis in vivo are not fully understood. The rela-
tionships between the plasma concentrations of U-480 and U-603 and intracellular whole-blood bactericidal activity (WBA) in
ex vivo cultures were examined using a direct competitive population pharmacokinetic (PK)/pharmacodynamic 4-parameter
sigmoid model. The data set included 690 PK determinations and 345 WBA determinations from 50 tuberculosis patients en-
rolled in a phase 2a sutezolid trial. The model parameters were solved iteratively. The median U-603/U-480 concentration ratio
was 7.1 (range, 1 to 28). The apparent 50% inhibitory concentration of U-603 for intracellular M. tuberculosis was 17-fold greater
than that of U-480 (90% confidence interval [CI], 9.9- to 53-fold). Model parameters were used to simulate in vivo activity after
oral dosing with sutezolid at 600 mg twice a day (BID) and 1,200 mg once a day (QD). Divided dosing resulted in greater cumula-
tive activity (�0.269 log10 per day; 90% CI, �0.237 to �0.293 log10 per day) than single daily dosing (�0.186 log10 per day; 90%
CI, �0.160 to �0.208 log10 per day). U-480 accounted for 84% and 78% of the activity for BID and QD dosing, respectively, de-
spite the higher concentrations of U-603. Killing of intracellular M. tuberculosis by orally administered sutezolid is mainly due
to the activity of the parent compound. Taken together with the findings of other studies in the hollow-fiber model, these find-
ings suggest that sutezolid and its metabolite act on different mycobacterial subpopulations.

Mycobacterium tuberculosis resistance to standard first-line
drugs (drug-resistant tuberculosis [DR-TB]) is a serious and

growing global health threat, causing at least 444,000 new tuber-
culosis (TB) cases and 150,000 deaths annually (1). Oxazolidinone
antimicrobials are increasingly viewed as candidates for inclusion
in new regimens for DR-TB, as they have a distinct mechanism of
action (binding to the 23S ribosome) without cross-resistance to
current drugs. Linezolid is the only currently licensed oxazolidi-
none. Sutezolid (PNU-100480 [U-480]) is a thiomorpholinyl an-
alog of linezolid with superior efficacy against M. tuberculosis in
the hollow-fiber, mouse, and whole-blood models (2–4). Time-
dependent killing of M. tuberculosis by sutezolid has been reported
in whole blood and hollow fibers (2, 3).

Orally administered sutezolid is rapidly oxidized in vivo to an
active sulfoxide metabolite (PNU-101603 [U-603]), which then
undergoes renal excretion. The concentrations of U-603 achieved
in human plasma are severalfold greater than those of the parent.
Some studies have reported similar MICs for both U-480 and
U-603 (0.25 �g/ml) for reference strains and clinical isolates, re-
gardless of the method of testing (5, 6); however, others have
reported lower median MIC values (�0.062 �g/ml) for the parent
when clinical isolates are tested in liquid culture (6).

The relative contributions of the parent and metabolite to kill-
ing of mycobacteria appear to differ according to cellular location.
Studies in the hollow-fiber model using concentrations of parent
and metabolite that are achieved in human plasma have indicated
that killing of extracellular mycobacteria by sutezolid is mainly

due to the metabolite (2). In contrast, studies in which sutezolid or
its metabolite were added separately to cultures of M. tuberculosis-
infected mammalian cells have found the parent to be at least
10-fold more potent than the metabolite (7). However, these stud-
ies have not examined the activity of sutezolid as it would occur in
the cells of patients with tuberculosis, which may differ in immune
function and drug metabolism.

The present study used mathematical modeling to examine the
relative contributions of U-480 and U-603 to the killing of intra-
cellular M. tuberculosis in ex vivo cultures measuring whole-blood
bactericidal activity (WBA) that were conducted in clinical trial
B1171003, the first study of sutezolid in patients with pulmonary
tuberculosis.

MATERIALS AND METHODS
Subjects. As previously reported (8), subjects consisted of men and
women aged 18 to 65 years with chest radiographs with findings consistent
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with pulmonary tuberculosis, positive sputum acid-fast smears, culture or
molecular confirmation of drug-susceptible M. tuberculosis, a random
blood glucose level of �150 mg/dl, reasonably normal renal and hepatic
function, and a willingness to provide written informed consent accord-
ing to International Conference on Harmonization guidelines. Subjects
were either HIV-1 uninfected or HIV-1 infected with CD4 T cell counts of
�350/mm3 and not currently receiving antiretroviral therapy. This study
received ethical approval from the University of Cape Town Faculty of
Health Sciences Human Research Ethics Committee, Cape Town, South
Africa, and from Pharma-Ethics, Lyttelton Manor, South Africa.

Treatments. Subjects were randomly assigned to receive sutezolid at
600 mg twice a day (BID; n � 25) or 1,200 mg once a day (QD; n � 25) or
to receive a positive control of fixed-dose combination tablets consisting
of isoniazid, rifampin, pyrazinamide, and ethambutol (HRZE; Rifafour
e275; n � 9). The data for HRZE-treated subjects were not included in the
present analysis.

Evaluations. Blood was collected for WBA at the baseline (WBA0) and
for pharmacokinetic (PK) and WBA determinations on days 13 and 14 (at
0, 1, 2, 3, 6, 8, and 12 h postdosing). Plasma was separated immediately
after collection and stored at �20°C for PK determinations. Total plasma
concentrations of PNU-100480 and PNU-101603 were determined using
a validated high-pressure liquid chromatography-tandem mass spec-
trometry method by Advion BioServices (Ithaca, NY), as previously de-
scribed (9).

WBA was determined as previously described (9). Briefly, an M. tu-
berculosis H37Rv stock was prepared in mycobacterial growth indicator
tubes (MGITs; Becton, Dickinson, Sparks, MD) containing oleic acid,
albumin, dextrose, and catalase (OADC; Becton, Dickinson) and poly-
myxin B, amphotericin B, nalidixic acid, trimethoprim, and azlocillin
(PANTA; Becton, Dickinson). For each batch of stock, a titration experi-
ment described the relationship between the inoculum volume and MGIT
time to positivity (TTP). Whole-blood cultures consisted of heparinized
blood, an equal volume of RPMI 1640 tissue culture medium (Highveld
Biological, Lyndhurst, South Africa), and bacilli of the volume of the M.
tuberculosis H37Rv stock identified by the titration curve to have an MGIT
TTP of 5.5 days. Direct inoculation of this volume into an MGIT culture
served as a growth control. Whole-blood cultures were incubated with
slow constant mixing for 72 h, after which cells were sedimented, the
liquid phase was removed, and blood cells were disrupted by hypotonic
lysis. Bacilli were recovered and inoculated into MGIT cultures. The log
change in viability was calculated as log(final) � log(initial), where final
and initial were the volumes corresponding to the TTPs of the completed
whole-blood culture and its inoculum, respectively, on the basis of the
titration curve of the stock. Results were expressed as the log change per
day (�log/d) of whole-blood culture. The cumulative WBA over 24 h was
calculated as the area under the concentration-time curve from time zero
to 24 h of values measured at discrete time points, using the trapezoidal
method. Results were expressed as �log/d · d, or simply as the log change.

Mathematical modeling. A population PK/pharmacodynamic (PD)
model was developed to simultaneously describe the relationship between
the concentrations of U-480 and U-603 observed in plasma and the bac-
tericidal activity observed in whole-blood cultures. The relationship be-
tween drug concentration and bactericidal activity was examined using a
4-parameter sigmoid curve, on the basis of previous observations that
killing was concentration dependent at low concentrations but did not
increase further as a maximal response (Imax) was approached (3). The
activities of U-480 and U-603 were assumed to be competitive, on the
basis of previous in vitro observations that the addition of U-603 to opti-
mal concentrations of U-480 did not further increase intracellular drug
activity (10). The equations used to describe bactericidal activity were as
follows: WBA � WBA0 � {Imax[(P � M)/(P � M � 1)]}, P � (C4800.5)/
IC50480)	480, and M � (C6030.5)/IC50603)	603, where WBA is the model-
predicted effect; WBA0 is the baseline effect; Imax is the maximum effect;
IC50480 is the 50% inhibitory concentration of U-480, or the concentra-
tion of U-480 for 50% of the maximum effect; IC50603 is the 50% inhib-

itory concentration of U-603, or the concentration of U-603 for 50% of
the maximum effect; 	480 is the shape factor (Hill coefficient) of the con-
centration-effect relationship for U-480, 	603 is the shape factor (Hill
coefficient) of the concentration-effect relationship for U-603, C480 is the
observed plasma concentration of U-480, and C603 is the observed plasma
concentration of U-603.

The plasma concentrations of U-480 and U-603 were adjusted by a
factor of 0.5 to account for the dilution of blood with tissue culture me-
dium in the whole-blood cultures.

The model was developed using the $PRED subroutine and FOCE-I in
the NONMEM (version 7.1.2) program (11). Intersubject variability was
tested for all model-estimated parameters alone or in combination. Re-
sidual variability was described with an additive error model. Model ade-
quacy was assessed by goodness-of-fit plots and visual predictive checks
(n � 1,000), using the R package (version 2.12.2) (12). The precision of
the parameter estimates was obtained by nonparametric bootstrap anal-
ysis (n � 1,000), using the PsN (version 3.2.12) program (13). The WBA
time course was simulated for U-480, U-603, and U-480 –U-603 on the
basis of final model parameters and median plasma concentration-time
profiles.

RESULTS

A total of 690 PK determinations and 345 WBA determinations
from 50 subjects were analyzed. The median ratio of the U-603/
U-480 plasma concentrations was 7.1 (range, 1 to 28). High ratios
mainly occurred at late time points in the dosing interval. The
wide range of values facilitated modeling of the relative contribu-
tions of parent and metabolite to overall activity. The model was
solved iteratively to determine the parameter values that most
closely predicted actual WBA results. Final parameter estimates
are indicated in Table 1. The concentration of U-603 required for
a half-maximal effect (IC50603) was 17-fold greater than that for
U-480 (90% confidence interval [CI], 9.9 to 53). The value of 	
(the shape factor of the concentration-effect relationship) was de-
termined for both U-480 and U-603. Its value differed signifi-
cantly from 1 only for U-480. Intersubject variability was tested
for IC50480, IC50603, and WBA0; however, only intersubject vari-
ability in WBA0 remained significant in the final model. The rel-
atively narrow confidence intervals (Table 1) supported the ade-
quacy of the fit of the model. Diagnostic plots (Fig. 1) did not
indicate any systematic errors in the model. The eta shrinkage was
20.87%. A visual predictive check (Fig. 2) revealed an adequate
correspondence of the observed and predicted values throughout
the dosing interval.

The concentration-activity relationships predicted by the

TABLE 1 Final parameter estimates and 90% CIs

Parameter Estimate 90% CI

Fixed effects
WBA0 (�log/d) 0.182 0.154–0.209
Imax (�log/d) 0.597 0.559–0.636
IC50480 (ng/ml) 70.4 56.0–84.9
IC50603 (ng/ml) 1,200 839–2,960
	480 2.25 1.7–3.2
	603 (0.94)a

Random effects
WBA0 (%) 27.4 19.4–35.2
Sigmab 0.096 0.075–0.114

a The initial estimate for 	603 (0.94) could not be distinguished from 1 and was omitted
from the final model.
b Sigma, residual error.
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model for sutezolid (U-480) and its metabolite (U-603) on the
basis of the fixed parameter estimates in Table 1 are illustrated in
Fig. 3. Compared to the curve for U-603, the curve for U-480 was
shifted to the left and had a steeper slope. The mean apparent
intracellular MIC (the extracellular concentration required for in-
tracellular bacteriostasis) for U-480 was 0.05 �g/ml, whereas that
for U-603 was 0.55 �g/ml, which was 11-fold greater.

The model was then used to simulate mycobactericidal activity
in vivo after oral dosing with sutezolid at 600 mg BID and 1,200 mg
QD, on the basis of median plasma drug concentrations from the
recently completed phase 2a trial (8). Unlike the results reported
in that trial, however, these reflect drug concentrations and effects
as they occur in vivo without artifacts resulting from diluting
blood with tissue culture medium in vitro. Results are shown in
Fig. 4. The upper panels indicate activity at discrete time points.
Cumulative activity, calculated as the integral over time of values
observed at discrete time points, is shown in the lower panels.
These take the form of a time-kill curve, converting a static kill

model into a dynamic one. A potential shortcoming of this ap-
proach is that postantibiotic effects (PAEs) are not represented;
however, studies with linezolid suggest a short PAE (4 h) when
oxazolidinones are tested against M. tuberculosis (14).

Examination of the cumulative intracellular activity of sut-
ezolid using this approach revealed that divided dosing of sut-
ezolid produced a greater cumulative effect (�0.269 log10 per day;
90% CI, �0.237 to �0.293 log10 per day) than single daily dosing
(�0.186 log10 per day; 90% CI, �0.160 to �0.208 log10 per day).
U-480 accounted for 78% and 84% of the cumulative daily activity

FIG 1 Diagnostic plots to evaluate goodness of fit. iWRES, individual weighted residuals. Actual and predicted values indicate the log change in mycobacterial
viability per day (�log/d) of whole-blood culture.

FIG 2 Visual predictive check of model. (Left) Dosing at 600 mg BID; (right)
dosing at 1,200 mg QD. Symbols indicate individual observations; solid lines,
model predictions; dashed lines, 5th to 95th prediction intervals. The wide
confidence interval at 12 h in the 600-mg-BID arm was due to a delay of up to
1 h postdosing in obtaining the 12-h specimen from 7 subjects.

FIG 3 Predicted individual concentration-activity relationships for sutezolid
(U-480) and its main metabolite (U-603) against intracellular M. tuberculosis
on the basis of the fixed-effect estimates of Table 1. The vertical axis indicates
the change in mycobacterial viability per day of whole-blood culture, with
negative values indicating killing. Dotted lines indicate the concentrations
required for intracellular bacteriostasis.
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when sutezolid was administered at 1,200 mg QD and 600 mg
BID, respectively, with the contribution of U-603 becoming sig-
nificant only at later time points in the dosing interval.

DISCUSSION

This study used a direct PK/PD model to simultaneously deter-
mine the relationship between intracellular mycobactericidal ac-
tivity and plasma concentrations of sutezolid and its major me-
tabolite in patients with pulmonary tuberculosis. The parent
(U-480) was found to be 17-fold more potent than its metabolite
for killing of intracellular M. tuberculosis. Similar results have been
reported when the parent and metabolite were added separately to
cultures of M. tuberculosis-infected mammalian cells (7). The ba-
sis of this observation is not known but may reflect differences in
intracellular drug accumulation. Approximately 80% of the intra-
cellular activity could be attributed to the parent, despite substan-
tially greater exposures to the metabolite in vivo. This finding
stands in contrast to extracellular bactericidal activity, which, in
the hollow-fiber model, appeared to be mainly due to the metab-
olite (U-603), due to its higher achieved concentrations. Together,
these two observations indicate that drugs that affect sutezolid
metabolism may influence outcomes when combined with sut-
ezolid in future TB trials.

Distinct mycobacterial subpopulations exist in patients with
tuberculosis, with each subpopulation having distinct biological
and clinical significance. Extracellular mycobacteria comprise the

majority of the mycobacterial burden in patients at the time of TB
diagnosis, particularly in patients with cavitary pulmonary dis-
ease. These bacilli are essential for TB transmission, through the
generation by coughing of M. tuberculosis-infected aerosol drop-
lets. Because these organisms are, for the most part, actively rep-
licating, this subpopulation is likely responsible for the selection
and emergence of drug resistance during treatment. Factors that
reduce exposure to U-603 may therefore increase the risk of resis-
tance emerging during sutezolid treatment.

The other mycobacterial subpopulation of importance in tu-
berculosis is that within tissues and cells. M. tuberculosis is readily
ingested but not readily killed by host phagocytic cells, resulting in
the characteristic pathology of human M. tuberculosis infection,
the granuloma. Bacilli in tissues exist both within the necrotic
centers of granulomas and within intact macrophages near their
periphery. Bacillary replication and metabolism in these circum-
stances are limited by a mycobacterial dormancy response trig-
gered by a lack of oxygen and nutrients. It is thought that the
propensity of tuberculosis to relapse despite apparently successful
treatment is due to persistence of this subpopulation.

Mycobacteria added to whole-blood cultures rapidly undergo
essentially complete phagocytosis by neutrophils and monocytes
(15, 16). The extent of mycobacterial growth or killing in the ab-
sence of chemotherapy reflects the balance between microbial
pathogenicity and host immune mechanisms (15–21). The effects

FIG 4 Predicted in vivo mycobactericidal activity of U-603 and U-480, individually and in combination, after simulated oral dosing with sutezolid at 600 mg BID
and 1,200 mg QD. (Top) Activity at discrete time points; (bottom) cumulative activity, calculated as the integral over time of values at discrete time points.
Shading indicates the 90% CI on the basis of PK variability.
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of administered chemotherapy are reflected in the ex vivo whole-
blood model as they occur in cells in vivo. After standard oral
doses, the rank order of activity of anti-TB drugs in the model is
rifampin � moxifloxacin � isoniazid � pyrazinamide � etham-
butol (16). Standard therapy shows 3 times the activity of current
regimens for multidrug-resistant TB. In one small study, the cu-
mulative WBA during TB treatment was superior in those patients
whose sputum cultures converted by month 2 (22). Culture status
at 2 months is, in turn, an independent predictor of relapse risk
(23, 24). The whole-blood model may therefore be best described
as an emerging biomarker of drug effects associated with durable
TB cure. The observations obtained using this model in the pres-
ent study suggest that reduced exposure to U-480 due to enhanced
metabolism may increase the risk of relapse after treatment with
sutezolid.

The oxidative metabolism of sutezolid is not fully understood.
CYP3A4 and flavin-containing monooxygenases each contribute
20 to 30% toward its metabolism. CYP3A4 inhibitors or inducers
may therefore affect the relative concentrations of sutezolid and its
metabolite, thus potentially affecting the two main goals of TB
treatment, tissue sterilization and resistance prevention. Specific
attention will be warranted to examine the PK-PD relationship of
sutezolid in future trials in which it is combined with rifampin,
ritonavir, or other drugs that may affect its metabolism.

Finally, this model also enhances our understanding of the
PK-PD relationship of sutezolid in vivo. Drug concentrations in
the ex vivo cultures are reduced by half, due to the dilution of
blood with tissue culture medium. Modeling removed this arti-
fact, predicting the drug effects at the concentrations achieved in
vivo. The predicted in vivo cumulative activities (�0.269 and
�0.186 for BID and QD dosing, respectively) are greater than
those previously reported ex vivo (�0.142 and �0.089, respec-
tively) (8). In addition, the difference between divided and single
daily dosing is magnified. Longer clinical trials will be required to
determine if divided dosing of sutezolid results in accelerated tis-
sue sterilization and a shortened required duration of treatment,
as these data would suggest.
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